Stats Functions
BinomialCDF
calculates the cumulative distribution function for a binomial distribution at a given point
Syntax:
BinomialCDF(k: float, n: float, p: float) -> float
Examples:
BinomialCDF(5, 10, 0.5) ~= 0.623046875
BinomialPMF
calculates the probability mass function for a binomial distribution at a given point
Syntax:
BinomialPMF(k: float, n: float, p: float) -> float
Examples:
BinomialPMF(5, 10, 0.5) ~= 0.24609375
Erf
returns the error function of x
Syntax:
Erf(x: float) -> float
Examples:
Erf(0) ~= 0
Erf(0.5) ~= 0.5204998778130465
Erf(1) ~= 0.8427007929497149
ErfInv
returns the inverse error function of x
Syntax:
ErfInv(x: float) -> float
Examples:
ErfInv(0) ~= 0
ErfInv(0.5204998778130465) ~= 0.5
ErfInv(0.8427007929497149) ~= 1
ExponentialCDF
calculates the cumulative distribution function for an exponential distribution at a given point
Syntax:
ExponentialCDF(x: float, rate: float) -> float
Examples:
ExponentialCDF(1, 1) ~= 0.6321205588285577
ExponentialPDF
calculates the probability density function for an exponential distribution at a given point
Syntax:
ExponentialPDF(x: float, rate: float) -> float
Examples:
ExponentialPDF(1, 1) ~= 0.36787944117144233
ExponentialQuantile
calculates the inverse cumulative distribution (quantile function) for an exponential distribution at a given probability
Syntax:
ExponentialQuantile(p: float, rate: float) -> float
Examples:
ExponentialQuantile(0.6321205588285577, 1) ~= 1.0
NormalCDF
calculates the cumulative distribution function for a normal distribution at a given point
Syntax:
NormalCDF(x: float, mean: float, stdDev: float) -> float
Examples:
NormalCDF(0.5, 0, 1) ~= 0.6914624612740131
NormalPDF
calculates the probability density function for a normal distribution at a given point
Syntax:
NormalPDF(x: float, mean: float, stdDev: float) -> float
Examples:
NormalPDF(0.5, 0, 1) ~= 0.3520653267642995
NormalQuantile
calculates the inverse cumulative distribution (quantile function) for a normal distribution at a given probability
Syntax:
NormalQuantile(p: float, mean: float, stdDev: float) -> float
Examples:
NormalQuantile(0.975, 0, 1) ~= 1.959963984540054
PoissonCDF
calculates the cumulative distribution function for a poisson distribution at a given point
Syntax:
PoissonCDF(k: float, lambda: float) -> float
Examples:
PoissonCDF(2, 3.0) ~= 0.42319008112684364
PoissonPMF
calculates the probability mass function for a poisson distribution at a given point
Syntax:
PoissonPMF(k: float, lambda: float) -> float
Examples:
PoissonPMF(2, 3.0) ~= 0.22404180765538775
UniformCDF
calculates the cumulative distribution function for a uniform distribution at a given point
Syntax:
UniformCDF(x: float, min: float, max: float) -> float
Examples:
UniformCDF(0.5, 0, 1) ~= 0.5
UniformPDF
calculates the probability density function for a uniform distribution at a given point
Syntax:
UniformPDF(x: float, min: float, max: float) -> float
Examples:
UniformPDF(0.5, 0, 1) ~= 1.0
UniformQuantile
calculates the inverse cumulative distribution (quantile function) for a uniform distribution at a given probability
Syntax:
UniformQuantile(p: float, min: float, max: float) -> float
Examples:
UniformQuantile(0.5, 0, 1) ~= 0.5
WilsonScoreInterval
returns the lower and upper bounds of the confidence interval for a given number of successes and trials.
Syntax:
WilsonScoreInterval(n: int, successes: int, confidence: float) -> {lower: float, upper: float}?
Examples:
WilsonScoreInterval(100, 10, 0.95).lower ~= 0.0607186670154472
WilsonScoreInterval(100, 10, 0.95).upper ~= 0.1603555096110922
WilsonScoreInterval(0, 0, 0.95) = {lower: null, upper: null}